Science:仿南洋杉3D毛细锯齿结构表面流体自主择向

2021-09-01

 

流体可控输运广泛存在于各种自然系统和实际工程中,在微流控、冷凝换热、抗结冰和界面减阻等领域具有广阔的应用前景。自从表/界面科学润湿性基础理论建立以来,国内外学者普遍认为,液体倾向于自发向系统能量降低的方向运动,其运动方向主要取决于表面结构特征和化学组成,与液体的性质无关。然而,液体能否决定其命运,在不改变表面结构和无能量输入的前提下实现运动方向的自主选择是长期以来困扰学者们的科学难题。


近日,香港城市大学王钻开教授及其合作者借鉴南洋杉叶片多重悬臂结构特征,制备了仿南洋杉3D毛细锯齿结构表面,通过建立3D固/液界面交互作用,实现流体运动方向的自主选择。该研究以“3D capillary ratchet-induced liquid directional steering”为题发表在国际顶级期刊Science上。大连理工大学冯诗乐副教授和香港城市大学朱平安助理教授为该论文共同第一作者,香港城市大学王钻开教授为该论文通讯作者。


 

图1 南洋杉叶片及其仿生表面多悬臂结构特征。A 南洋杉叶片表面双重曲率结构特征,包括横向和纵向曲率。B仿南洋杉3D毛细锯齿结构表面双重悬臂结构特征,单个锯齿厚度80 μm。

 

要点:研究者借鉴南洋杉叶片结构特征,使用PμSL 3D打印技术(nanoArch® S140,摩方精密),设计并制备了由平行排列的具有横向和纵向曲率的双重悬臂结构的锯齿阵列组成的仿南洋杉3D毛细锯齿结构表面、具有对称垂直平面叶片结构的表面、具有倾斜平面叶片结构的表面和具有平行沟槽结构的表面。3D打印技术所使用树脂为丙烯酸光敏树脂,固化紫外光波长为405 nm,能量密度、曝光时间、曝光分辨率、打印层厚分别30 mW/cm²,1 s,10 μm,10 μm。叶片间距p为750 μm,列间距w为1000 μm,叶片倾斜角度为15 – 90°,纵向和横向的曲率半径R1和R2分别为~400 μm和~650 μm。

 

 

图2南洋杉叶片及仿南洋杉3D毛细锯齿结构表面流体输运性能。A酒精(红色)和水(蓝色)在南洋杉叶片上的运动行为。其中,酒精沿着锯齿结构倾斜的方向运动,而水沿着相反的方向运动。B低表面能液体和高表面能液体在仿南洋杉3D毛细锯齿结构表面运动行为。

 

要点:研究者发现,乙醇沿着南洋杉叶片表面锯齿结构倾斜的方向运动,而水沿着反方向运动,这种通过调控液体性质来控制其输运方向的现象尚未报道。受此启发,研究者研究了不同表面张力流体在仿南洋杉3D毛细锯齿结构表面的输运性能。研究表明,该仿生功能表面展现出和南洋杉叶片相似的流体择向性能:低表面能流体沿着锯齿结构倾斜的方向运动,而高表面能流体沿着与锯齿结构倾斜相反的方向的运动。即使在长程输运和圆形表面上,流体依然保持良好的单向输运性能。

 

 

图3 仿南洋杉3D毛细锯齿结构表面流体自主择向机理。A/B低表面能液体和高表面能液体在仿南洋杉3D毛细锯齿结构表面的铺展行为。C横向曲率结构悬臂效应力学分析模型。D流体打破结构扎钉效应的临界状态。E纵向曲率结构悬臂效应力学分析模型。F流体自主择向现象和表面结构及流体表面张力的关系。


要点:研究者观察发现,液体在仿南洋杉3D毛细锯齿结构表面铺展过程中,低表面能液体固/液界面展现自下而上的铺展模式,而高表面能液体展现自上而下的铺展模式。实际上,流体沿着特定方向的自发铺展需要满足两个临界条件:第一,流体能接触到相邻的锯齿结构;第二,流体前端受到的驱动力足够克服结构的扎钉效应。3D毛细锯齿结构的亚毫米尺度双重悬臂结构特征,能够调控不同表面张力流体两个临界条件的阈值,建立3D空间上非对称固/液界面相互作用,进而选择流体的铺展模式和铺展方向,实现液体运动方向的有效控制。这是仿南洋杉3D毛细锯齿结构表面流体自主择向的本质。

 

该论文合作者包括香港城市大学机械工程系郑焕玺、李加乾,大连理工大学机械工程学院詹海洋、陈琛、刘亚华教授,香港城市大学生物医学科学系姚希副教授和香港大学机械工程系王立秋教授。

 

论文链接:

https://www.science.org/doi/10.1126/science.abg7552