湖南大学王兆龙课题组:基于PμSL 3D打印的水凝胶用于柔性热响应智能窗
发布日期:2022-04-12
浏览量:1320次
通风、空调、照明、供暖等能耗占建筑总能耗的40%以上,同时温室气体排放和全球人口持续增加,极大加剧了全球气候变暖。因此,基于外界环境条件调节太阳辐射的智能窗受到了极大的关注。该智能窗可通过感知外部刺激(如光、热、电等)而产生相应的光学性质变化,从而选择性地吸收或反射太阳辐射,达到改善室内光强、温度的目的。根据制备材料常分为热致变色智能窗、光致变色智能窗、机械致变色智能窗以及电致变色智能窗。其中,热致变色智能窗因其对天气和温度的适应性响应而得到广泛的研究。
近年来,热响应水凝胶在超过低临界溶解温度(LCST)时,可快速完成从透明状态到不透明状态的可逆转变,可作为一种新型热致变色智能窗的材料。热响应水凝胶智能窗可以在无需额外能量输入的情况下,最大限度地利用太阳光的热量,对能耗的降低具有重要作用。聚(N-异丙基丙烯酰胺)(PNIPAM) 是最常用的热响应材料,其LCST大约是32℃。PNIPAM水凝胶在可逆相变过程中表现出高太阳光调制能力,而且在室温下具有高透光率,可以保证良好的室内能见度。然而,纯PNIPAM水凝胶柔韧性较差,难以通过传统的制备技术制造复杂的结构。因此,需要开发一种具有良好的机械性能、高太阳光调制能力以及高透光率的新型水凝胶用于智能窗的制备。
3D打印技术作为一种新型的材料加工技术,因其设计灵活、成本低、加工效率高等优点,已经应用于复杂结构水凝胶的加工制备。然而,受限于刺激响应型单体,通过3D打印技术制备高分辨率结构的水凝胶智能窗仍极具挑战性。
近日,湖南大学王兆龙课题组开发了一种新型的热响应3D打印水凝胶用于智能窗的设计,基于面投影微立体光刻(PμSL) 高精度3D打印技术,水凝胶结构的分辨率高达40μm。研究者基于N-异丙基丙烯酰胺(NIPAM)与亲水性的4-丙烯酰吗啉(ACMO)乙烯基单体的共聚反应制备了热响应水凝胶。该水凝胶响应机理是通过可逆亲水/疏水相变反应调节NIPAM-ACMO共聚物对光的散射行为:当温度低于LCST时,NIPAM-ACMO共聚物同水之间形成分子间氢键,入射光可以透过;一旦温度超过LCST,疏水缔合物主导太阳光的传输,导致入射光发生散射,水凝胶由透明状态转变为不透明状态,阻挡太阳光的照射(图1)。采用PμSL (nanoArch S140, 摩方精密)在玻璃衬底上打印水凝胶图案,最高分辨率可达40μm。水凝胶图案在20℃是透明的;然而,当温度升高至40℃时,图案化的水凝胶选择性地由透明状态转变为不透明状态(图2)。而且,3D打印水凝胶从透明状态到不透明状态的转变是可逆的。
图1.a:热响应水凝胶设计的光学透明-不透明可切换窗口刺激响应变化的示意图
图2.基于PμSL高精度3D打印技术制备的水凝胶图案。a:光固化树脂的组成成分;b:打印水凝胶的拉曼光谱;c:PμSL高精度3D打印技术原理示意图;d:3D打印高分辨率水凝胶图案,标尺是100μm;e:图案化水凝胶选择性透明-不透明转变的图片,标尺是5mm
图3. 柔性热响应水凝胶器件的性能。a:透明水凝胶承受变形的照片(20℃),比例尺是10mm;b:不透明水凝胶承受变形的照片(40℃),比例尺是10mm;c:不同ACMO质量含量的水凝胶应力-应变曲线;d:不同PEDGA质量含量的水凝胶应力-应变曲线;e:不同温度下的水凝胶应力-应变曲线;f:PDMS衬底上水凝胶的透射光谱;g:PC衬底上水凝胶的透射光谱;h:水凝胶智能窗与已有文献报道的性能比较
同纯PNIPAM水凝胶智能窗相比,热响应ACMO单体赋予新型水凝胶极好的柔韧性和超高的拉伸性。其可以承受很大的变形,例如弯曲、拉伸、扭转;单轴拉伸试验表明水凝胶拉伸性能最大值为1500%。采用3D打印水凝胶制作的柔性热响应智能窗表现出优异的太阳光调制能力。智能窗在20℃是完全透明的,透光率(Tlum )高达85.847%;当环境温度超过LCST时,智能窗能通过超快的透明状态-不透明状态的转变调节太阳光的传输,太阳光调制率(ΔTsol)高达79.332%。相比于其他文献报道的热致变色智能窗,该工作中制备的柔性水凝胶智能窗表现出超高的透光率和太阳光调制率。此研究在新一代理想智能窗的节能方面具有巨大的应用潜力。该研究成果,以“3D printed hydrogel for soft thermo-responsive smart window”为题发表在International Journal of Extreme Manufacturing上。
原文链接:
https://doi.org/10.1088/2631-7990/ac5ae3