阿联酋哈利法大学张铁军教授团队:滤膜基底3D打印助力研发仿生污染物控制技术

发布日期:2022-06-27

浏览量:1549次

滤膜基底3D打印助力研发仿生污染物控制技术

膜过滤和分离已广泛应用于生物医学、水和环境相关的领域。在水净化和废水过滤过程中,滤膜的孔隙结构仅允许净化水通过,而固体微颗粒(如微塑料)、油滴及其他污染物被膜阻挡,由此带来的膜污染和堵塞一直是有效水过滤的主要瓶颈。为此,来自哈利法大学的李红霞博士及其所在的张铁军教授团队,提出了一种仿生抗堵塞滤膜,创造性的利用微立体光刻技术直接将鱼类的鳃耙结构打印在滤膜表面以达到抗(耐)堵塞的目的。

 

海洋中多数鱼类是采用过滤机制来进食的:其将水和浮游生物等食物颗粒吞入口中,在水通过密集排列的鳃耙结构时,食物颗粒会被筛选留在口腔中。研究发现,当水流通过鳃耙结构排出体外时会形成漩涡,即使体积非常小的食物颗粒也会因此从鳃耙顶部弹出并返回口腔(如图1所示)。类似的,若将食物颗粒想象成为污水中的污染物颗粒,利用相同的弹回机制,就会大大减少污染物与滤膜表面接触的机会,从而有效减少膜污染和堵塞。

 

为了将鳃耙结构集成到滤膜表面,该团队发明了一种直接在滤膜表面打印复杂三维结构的技术。在该工作中,他们利用面投影微立体光刻3D打印系统(摩方精密nanoArch S130微纳3D打印设备),制造了一种“鱼鳃”滤膜并进一步集成在微流控器件(图2)中来快速测试抗堵塞过滤效果。直接膜上3D打印技术最大的优点在于这种一体化的器件在打印结构-膜界面处具有自密封属性,无需额外组装。此外,不仅滤膜,其他多孔材料如金属微网等也可以很容易地嵌入到 3D打印的器件中。

 

图1. 拟海洋鱼类捕食过滤机制的仿生抗堵塞滤膜

 

直接膜上3D打印技术制作的“鳃耙”滤膜微流控器件

图 2 直接膜上3D打印技术制作的“鳃耙”滤膜微流控器件

 

为测试“鳃耙”滤膜的抗堵塞性能,我们选择了两个最具挑战性的废水处理问题:表面活性剂稳定的乳液和塑料微颗粒。它们的形态和颗粒/液滴尺寸分布如图 3 所示。为了比较,我们还选取了没有任何表面结构的普通商用滤膜作为参考。如预期,当过滤塑料微粒时,普通滤膜的渗透通量在 10 分钟运行内急剧下降至其初始通量的 40%,而“鳃耙”滤膜可以保持高达80%的初始通量。此外,随着主流速度的增加,高渗透通量的持久性也明显被延长。

 

研究结果还发现:“鳃耙“滤膜的非凡防污/防堵性能源于过滤过程中污垢液滴/颗粒的独特流动行为。在研究中,滤膜微流控器件同时凭借其流动可视化揭示了抗堵塞的流体动力学机制。图 4 显示了油滴和塑料微粒在光学显微镜下通过鳃形结构上方时的流动轨迹。研究发现当液滴接近一个鳃结构单元时,它被渗透流夹带到间隙( t = 0.02 到 0.08 s,蓝色圆圈标记)。然而,由于涡流(红色圆圈标记,t = 0.10 s),液滴从间隙弹回并返回主流(t = 0.10 到 0.12 s)。这样,即使液滴尺寸远小于两个鳃耙间缝隙,它也不会接触到滤膜表面造成滤膜污染或堵塞。

 

目前,该团队独创的滤膜基底3D打印技术已申请国际专利。四川大学的袁绍军教授、麻省理工学院Nicholas X. Fang教授对此工作改进完善也有贡献。

 

图3 在过滤油水混合物和塑料微颗粒时“鳃耙“滤膜的抗堵塞性能

 

图4 通过流动可视化揭示的“鳃耙“滤膜抗堵塞的流体动力机制

 

原文链接:

https://doi.org/10.1038/s41598-022-11738-z

相关新闻